

DCC-003-001503

B. Sc. (Sem. V) (CBCS) Examination

April / May - 2015 Physics

Faculty Code : 003 Subject Code : 001503

Instructions: (1) All questions are compulsory.

- (2) Symbols have their usual meaning.
- (3) Numbers on right side indicates full marks.
- Select the correct answer from the MCQ and write in your 20 answer sheet only (All questions carry equal marks)
 - (1) Orbit is allowed certain discrete orientation only, known as
 - (A) Space quantization
 - (B) Spinning of an electron
 - (C) Principal quantum number
 - (D) Orbital quantum number
 - (2) In electronics configuration $2p^6$ p is stand for $l = ____$
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 3
 - (3) Anomalous Zeeman Effect is occurred when magnetic field is _____.
 - (A) Strong
 - (B) Weak
 - (C) Zero
 - (D) Infinite

(4)	In Zeeman Effect, the parallel view shows the doublet because of property of light.			
	(A) Transverse			
	(B) Longitudinal			
	(C) Electro-Magnetic			
	(D) Wave			
(5)	Stark Effect is a effect when source placed in field.			
	(A) Magnetic			
	(B) Nuclear Force			
	(C) Electrical			
	(D) Zero			
(6)	According to wave mechanics, orbital angular momentum is given by			
	(A) $P_l = \sqrt{l(l+1)} \frac{h}{2\pi}$			
	(B) $P_l = \sqrt[3]{(l+1)} \frac{h}{2\pi}$			
	(C) $P_l = l \frac{h}{2\pi}$			
	$(D) P_l = l^2 (l+1)$			
(7)	The most complex molecular spectra is spectra.			
	(A) Pure rotational			
	(B) Rotational-vibration			
	(C) Electronics band			

(D) None

(8)	The	intensity of Raman lines is roughly percent of		
	incident radiation.			
	(A)	0.01		
	(B)	1.01		
	(C)	1.001		
	(D)	0.001		
(9)	TEM is			
	(A)	Transmission Emission Microscopy		
	(B)	Transition Electron Microscopy		
	(C)	Transition Emission Microscopy		
	(D)	Transmission Electron Microscopy		
(10)		nan line having frequencies greater than that of the		
	incident line is called			
	(A)	'Stokes' lines		
	(B)	Anti-stokes lines		
	(C)	Reflected lines		
	(D)	None		
(11)	Mic	helson Interferometer works on the principle of		
	(A)	Division of Wavefront		
	(B)	Division of Amplitude		
	(C)	Multiple reflection		
	(D)	None		

(12) Visibility of the fringes in Michelson Interferometer is given by

(A)
$$\frac{I_{\text{max}} + I_{\text{min}}}{I_{\text{max}} - I_{\text{min}}}$$

(B)
$$\frac{I_{\text{max}} + I_{\text{min}}}{I_{\text{min}} - I_{\text{max}}}$$

(C)
$$\frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$

(D)
$$\frac{I_{\min} - I_{\max}}{I_{\max} + I_{\min}}$$

- (13) Quarter wave plate is used in producing _____.
 - (A) Elliptically polarized light
 - (B) Circularly polarized light
 - (C) Both (A) and (B)
 - (D) None
- (14) For calcite crystal _____.

(A)
$$\mu_0 < \mu_e$$

(B)
$$\mu_0 > \mu_e$$

(C)
$$\mu_0 = \mu_e$$

(D) None

(15)	The Snell's law is obeyed by			
	(A)	O-Ray		
	(B)	E-Ray		
	(C)	Both (A) and (B)		
	(D)	None		
(16)	In Fabry-Perot Etalon, fringes are produced due to			
	(A)	Multiple reflections in air film		
	(B)	Multiple relfections in glass film		
	(C)	Refraction through Air film		
	(D)	Refraction through glass film		
(17)	In Fabry-Perot interferometer, condition to produce maximum intensity is given by			
	(A)	$2d\cos\theta=m\lambda$		
	(B)	$d\cos\theta = m\lambda/2$		
	(C)	$2\cos\theta = m\lambda/d$		
	(D)	Above all		
(18)	Lum	Lummer and Gehrcke plate is used to observe		
	(A)	Polarized light		
	(B)	Fine structure of spectral lines		
	(C)	Both (A) and (B)		
	(D)	None		

	(19)	Nicol prism is made from			
		(A)	Quartz		
		(B)	Calcite		
		(C)	Ceramic glass		
		(D)	None		
	(20)	The	refractive index is same in all direction is known a	ıs	
		optio	eally material.		
		(A)	Anisotropic		
		(B)	Isotropic		
		(C)	Crystalline		
		(D)	Amorphous		
2	(a)	Ansv	wer the following questions: (any three)	6	
		(1)	What is anisotropic material?		
		(2)	Define Optical axis.		
		(3)	What is Polarizer and Analyzer?		
		(4)	What is double refraction?		
		(5)	What is Pockels effect?		
		(6)	What is Cotton - Mouton effect ?		
	(b)	Ansv	wer the following questions: (any three)	9	
		(1)	Explain the application of M.I. as to determine		
			the refractive index of gases.		
		(2)	What is plan polarized light?		
		(3)	Explain half wave plate.		
		(4)	Explain calcite crystal		
		(5)	Explain positive and negative crystal.		
		(6)	What is anisotropic crystal?		

	(c)	Ans	swer the following questions: (any two)	10
		(1)	Explain 'Circular Fringes' in Michelson	
			interferometer.	
		(2)	Explain construction and working of Michelson	
			Interferometer.	
		(3)	Compare the properties of E-Rays and O-Rays.	
		(4)	Explain the Huygens explanation of double refraction	m.
		(5)	Explain Nicol prism with schematic diagram.	
3	(a)	Ans	swer the following questions: (any three)	6
		(1)	What is Zeeman Effect ?	
		(2)	What is Stark Effect?	
		(3)	What is the full form of orbital state s,p,d,f?	
		(4)	Explain 2p ⁶ orbital state.	
		(5)	What is π -component in Zeeman Effect ?	
		(6)	Write the types of molecular Band Spectra.	
	(b)	Ans	swer the following questions: (any three)	9
		(1)	Explain the hypothesis of electron spin.	
		(2)	Explain space quantization.	
		(3)	Write a note on electronic band spectra.	
		(4)	Give the difference between Raman spectra	
			and Fluorescence spectra.	
		(5)	Explain Stark effect.	
		(6)	Write the principle of AFM.	
	(c)	Ans	swer the following questions: (any two)	10
		(1)	Give the classical interpretation of Normal	
			Zeeman Effect.	
		(2)	Explain pure rotational spectra.	
		(3)	Explain Paschen-Back effect.	
		(4)	Explain Raman Effect on the bases of quantum theo	ry.
		(5)	Write a note on TEM.	